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Chapter 1

Relations and Functions

Introduction
This chapter explores relations and functions, fundamental concepts in mathematics. We will cover various
types of relations (empty, universal, equivalence), properties of relations (reflexive, symmetric, transitive),
different types of functions (one-one, onto, bijective), composition of functions, and invertible functions.

Types of Relations
A relation in a set A is a subset of A × A.

• Empty Relation: R = ∅ ⊂ A × A. No element of A is related to any element of A.
• Universal Relation: R = A × A. Every element of A is related to every element of A.

Properties of Relations
Let R be a relation on set A.

• Reflexive: (a, a) ∈ R for all a ∈ A.
• Symmetric: If (a1, a2) ∈ R, then (a2, a1) ∈ R.
• Transitive: If (a1, a2) ∈ R and (a2, a3) ∈ R, then (a1, a3) ∈ R.
• Equivalence Relation: A relation is an equivalence relation if it is reflexive, symmetric, and transitive.

Equivalence Class
Given an equivalence relation R on a set A, the equivalence class of an element a ∈ A is the set of elements
related to a under R, denoted by [a]:

[a] = {x ∈ A | (a, x) ∈ R}.

The set of all equivalence classes forms a partition of A.

Types of Functions
Let f : X → Y be a function.

• One-one (Injective): f(x1) = f(x2) =⇒ x1 = x2 for all x1, x2 ∈ X.
• Onto (Surjective): For every y ∈ Y , there exists at least one x ∈ X such that f(x) = y.
• Bijective: A function that is both one-one and onto.

Counting Relations
Let A be a set with n elements.

• Total Relations: The total number of relations on A is 2n2 .
• Reflexive Relations: The total number of reflexive relations on A is 2n2−n.
• Symmetric Relations: The total number of symmetric relations on A is 2

n(n+1)
2 .

Counting Functions (f : A → B)
Let |A| = m and |B| = n (cardinality of sets A and B). The total number of functions depends on the
relationship between m and n:

• Total Functions: The total number of functions from A to B is nm

• If m ≤ n: The total number of injective (one-to-one) functions is n(n−1)(n−2) . . . (n−m+1) = n!
(n−m)! .

• If m > n: There are no injective functions (m > n makes injectivity impossible).
• If m = n: The total number of bijective functions (one-to-one and onto) is n!.
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Chapter 2

Inverse Trigonometric Functions

Introduction
In Chapter 1, we learned about inverse functions. This chapter explores trigonometric functions to create
invertible functions and examines their properties.

Basic Trigonometric Functions
The basic trigonometric functions are defined as follows:

• sin : R → [−1, 1]
• cos : R → [−1, 1]
• tan : R − {(2n + 1) π

2 : n ∈ Z} → R
• cot : R − {nπ : n ∈ Z} → R
• sec : R − {(2n + 1) π

2 : n ∈ Z} → R − (−1, 1)
• csc : R − {nπ : n ∈ Z} → R − (−1, 1)

Defining Inverse Functions
To define we need domain where it is one-to-one and onto. The range of the inverse function is then this
restricted domain. The principal value branch is defined as follows:

• sin−1 : [−1, 1] → [− π
2 , π

2 ]
• cos−1 : [−1, 1] → [0, π]
• tan−1 : R → (− π

2 , π
2 )

• cot−1 : R → (0, π)
• sec−1 : R − (−1, 1) → [0, π] − { π

2 }
Adjoi The graphs of the inverse trigonometric functions can be obtained by reflecting the graphs of the corre-
sponding trigonometric functions across the line y = x.

Properties
• sin(sin−1 x) = x, for x ∈ [−1, 1]
• sin−1(sin x) = x, for x ∈ [− π

2 , π
2 ]

• cos(cos−1 x) = x, for x ∈ [−1, 1]
• cos−1(cos x) = x, for x ∈ [0, π]
• tan(tan−1 x) = x, for x ∈ R
• tan−1(tan x) = x, for x ∈ (− π

2 , π
2 )

• sin−1 x + cos−1 x = π
2 , for x ∈ [−1, 1]

• tan−1 x + cot−1 x = π
2 , for x ∈ R

• sin−1(−x) = − sin−1 x, for x ∈ [−1, 1]
• cos−1(−x) = π − cos−1 x, for x ∈ [−1, 1]
• tan−1(−x) = − tan−1 x, for x ∈ R
• 2 sin−1 x = sin−1(2x

√
1 − x2), for x ∈ [− 1√

2 , 1√
2 ]

• 2 cos−1 x = cos−1(2x2 − 1), for x ∈ [ 1√
2 , 1]

• 2 tan−1 x = tan−1( 2x
1−x2 ), for |x| < 1
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Chapter 3

Matrices

Introduction
Matrices are fundamental mathematical objects represented as rectangular arrays of numbers or functions.
They provide a powerful and efficient way to represent and manipulate data, especially in linear algebra and
its applications. This chapter introduces the basic concepts and operations related to matrices.

Definition
Order: A matrix with m rows and n columns has order m × n. We denote a matrix A as A = [aij ]m×n, where
aij represents the entry in the i-th row and j-th column.

Types of Matrices
• Column Matrix: A matrix with only one column (m × 1).
• Row Matrix: A matrix with only one row (1 × n).
• Square Matrix: A matrix with an equal number of rows and columns (m = n). ␣
• Diagonal Matrix: A square matrix where all non-diagonal entries are zero.
• Scalar Matrix: A diagonal matrix with all diagonal entries equal.
• Identity Matrix (I): A scalar matrix with diagonal entries equal to 1. ✓
• Zero Matrix (0): A matrix where all entries are zero. ○

Matrix Operations
• Addition/Subtraction: Element-wise addition or subtraction (same order matrices).
• Scalar Multiplication: Multiply each element by a scalar k: kA = [kaij ].
• Matrix Multiplication: AB exists if the number of columns in A equals the number of rows in B.

The (i, j)-th entry of AB is given by the dot product of the i-th row of A and the j-th column of B:∑n
k=1 aikbkj .

• Transpose: The transpose AT (or A′) interchanges rows and columns.
– (AT )T = A
– (A + B)T = AT + BT

– (kA)T = kAT

– (AB)T = BT AT

• Inverse: If AA−1 = A−1A = I, then A−1 is the inverse. Only square matrices can have inverses.
– (A−1)−1 = A
– (AB)−1 = B−1A−1

– (AT )−1 = (A−1)T

Special Matrices
• Symmetric Matrix: A square matrix A such that A = AT .
• Skew-Symmetric Matrix: A square matrix A such that A = −AT . The diagonal entries are always

zero.
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Chapter 4

Determinants

Introduction
Determinants are scalar values associated with square matrices. They have significant applications in solving
systems of linear equations, finding areas of triangles, and determining matrix invertibility.

Order One
For a 1 × 1 matrix A = [a], the determinant is simply |A| = a.

Order Two

For a 2 × 2 matrix A =
[
a11 a12
a21 a22

]
, the determinant is: |A| = a11a22 − a12a21

Order Three

For a 3 × 3 matrix A =
[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]
, the determinant can be calculated by cofactor expansion along any

row or column. Expanding along the first row, we have: |A| = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) +
a13(a21a32 − a22a31)

Minors and Cofactors
• Minor (Mij): The minor of element aij is the determinant of the submatrix obtained by deleting the

i-th row and j-th column.
• Cofactor (Aij): The cofactor of element aij is given by Aij = (−1)i+jMij .

The determinant can be expressed as the sum of products of elements of a row (or column) with their corre-
sponding cofactors. For example, expanding along the first row: |A| =

∑n
j=1 a1jA1j .

Adjoint and Inverse
• Adjoint (adj A): The adjoint of matrix A is the transpose of its cofactor matrix: (adj A)ij = Aji.
• Inverse (A−1): If AA−1 = A−1A = I, then A−1 is the inverse of A. A−1 = 1

|A| adj A. A matrix is
invertible if and only if its determinant is non-zero.

Properties:
• A · adj(A) = adj(A) · A = |A|I
• (A−1)−1 = A
• (AB)−1 = B−1A−1

• (AT )−1 = (A−1)T

• |A−1| = 1
|A|

• |adj A| = |A|n−1 (for an n × n matrix)

Area of a Triangle
The area of a triangle with vertices (x1, y1), (x2, y2), and (x3, y3) is given by: Area =

1
2 |x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)| = 1

2

∣∣∣∣∣
∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣
∣∣∣∣∣

System of Linear Equations
A system of linear equations can be expressed in matrix form as AX = B.

• Unique Solution: If |A| ≠ 0, then X = A−1B gives the unique solution.
• No Solution or Infinitely Many Solutions: If |A| = 0, further analysis is needed (consider (adj A)B).
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Additional Properties
• |kA| = kn|A| (for an n × n matrix)
• |AB| = |A||B|
• If A and B are symmetric matrices, then AB − BA is a skew-symmetric matrix.
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Chapter 5

Continuity and Differentiability

Introduction
This chapter extends the study of differentiation from Class XI, introducing crucial concepts like continu-
ity, differentiability, and their relationship. We’ll cover the differentiation of inverse trigonometric functions,
exponential functions, and logarithmic functions. We’ll also explore fundamental theorems in this area.

Continuity at a Point
Let f be a real-valued function defined on a subset of real numbers, and let c be a point in the domain of f .
Then f is continuous at c if

lim
x→c

f(x) = f(c)

More precisely, f is continuous at c if the left-hand limit, the right-hand limit, and the value of the function
at x = c exist and are equal. A function f is continuous if it is continuous at every point in its domain. For a
function defined on the closed interval [a, b], continuity at a means limx→a+ f(x) = f(a), and continuity at b
means limx→b− f(x) = f(b).

Algebra of Continuous Functions
Let f and g be two continuous functions at a real number c. Then:

1. f + g is continuous at x = c.
2. f − g is continuous at x = c.
3. f · g is continuous at x = c.
4. f

g is continuous at x = c, provided g(c) ̸= 0.
Every rational function is continuous in its domain (except at points where the denominator is zero). The sine
and cosine functions are continuous everywhere.

Differentiability
Let f be a real-valued function and c be a point in its domain. The derivative of f at c is:

f ′(c) = lim
h→0

f(c + h) − f(c)
h

provided this limit exists. If this limit exists, we say f is differentiable at c. If f is differentiable at every point
in an interval, then f is differentiable on that interval. A function is differentiable if it’s differentiable at every
point in its domain. Every differentiable function is continuous, but the converse is not necessarily true. The
derivative of f is denoted by f ′(x), df

dx , or f ′(x).

Chain Rule
If y = f(g(x)) then, dy

dx = f ′(g(x)) · g′(x)
This can be extended to more than two functions.

Derivatives of Inverse Trigonometric Functions
The derivatives of the inverse trigonometric functions are:

• d
dx (sin−1 x) = 1√

1−x2 , for x ∈ (−1, 1)
• d

dx (cos−1 x) = − 1√
1−x2 , for x ∈ (−1, 1)

• d
dx (tan−1 x) = 1

1+x2 , for x ∈ R
• d

dx (cot−1 x) = − 1
1+x2 , for x ∈ R

• d
dx (sec−1 x) = 1

|x|
√

x2−1 , for |x| > 1
• d

dx (csc−1 x) = − 1
|x|

√
x2−1 , for |x| > 1
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Exponential and Logarithmic Functions
The exponential function with base b > 0 and b ̸= 1 is defined as f(x) = bx. The natural exponential function
is f(x) = ex, where e is Euler’s number. The logarithmic function with base b is the inverse of the exponential
function, defined as logb x = y if and only if by = x. The natural logarithmic function is ln x = loge x.
Derivatives:

• d
dx (ex) = ex

• d
dx (ln x) = 1

x , for x > 0
• d

dx (ax) = ax ln a, for a > 0 and a ̸= 1
• d

dx (loga x) = 1
x ln a , for x > 0 and a > 0 and a ̸= 1

Logarithmic differentiation is a technique to differentiate functions of the form y = [u(x)]v(x) by taking loga-
rithms of both sides.

Parametric Forms
If x = f(t) and y = g(t), then:

dy

dx
= dy/dt

dx/dt

The second derivative is given by:
d2y

dx2 = d

dx
( dy

dx
) =

d
dt ( dy

dx )
dx
dt

Differentiation Formulas
1. d

dx c = 0
2. d

dx xn = nxn−1

3. d
dx f(x) + g(x) = d

dx f(x) + d
dx g(x)

4. d
dx f(x) · g(x) = f ′(x)g(x) + f(x)g′(x)

5. d
dx

f(x)
g(x) = f ′(x)g(x)−f(x)g′(x)

[g(x)]2

6. d
dx sin x = cos x

7. d
dx cos x = − sin x

8. d
dx tan x = sec2 x

9. d
dx cot x = − csc2 x

10. d
dx sec x = sec x tan x

11. d
dx csc x = − csc x cot x

12. d
dx sin−1 x = 1√

1−x2

13. d
dx cos−1 x = − 1√

1−x2

14. d
dx tan−1 x = 1

1+x2

15. d
dx ln x = 1

x

16. d
dx ex = ex

17. d
dx ax = ax ln a
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Chapter 6

Applications of Derivatives

Introduction
This chapter explores applications of derivatives in various fields. We will see how derivatives help us understand
rates of change, find equations of tangents and normals to curves, locate maxima and minima of functions, and
approximate values of quantities.

Rate of Change
If a quantity y is a function of another quantity x, i.e., y = f(x), then dy

dx (or f ′(x)) represents the rate of
change of y with respect to x. If two variables x and y are functions of a third variable t, i.e., x = f(t) and
y = g(t), then by the chain rule:

dy

dx
= dy/dt

dx/dt
, if dx

dt
̸= 0

Increasing/Decreasing Functions
Let f be a function defined on an interval I. Then f is:

• Increasing on I if x1 < x2 in I =⇒ f(x1) < f(x2) for all x1, x2 ∈ I.
• Decreasing on I if x1 < x2 in I =⇒ f(x1) > f(x2) for all x1, x2 ∈ I.
• Constant on I if f(x) = c for all x ∈ I, where c is a constant.

First Derivative Test: Let f be continuous on [a, b] and differentiable on (a, b). Then:
• f is increasing if f ′(x) > 0 for all x ∈ (a, b).
• f is decreasing if f ′(x) < 0 for all x ∈ (a, b).
• f is constant if f ′(x) = 0 for all x ∈ (a, b).

Maxima and Minima
Let f be a function defined on an interval I, and let c be an interior point of I. Then c is:

• A point of local maxima if there exists an h > 0 such that f(c) ≥ f(x) for all x ∈ (c − h, c + h) with
x ̸= c. The value f(c) is the local maximum value.

• A point of local minima if there exists an h > 0 such that f(c) ≤ f(x) for all x ∈ (c − h, c + h) with
x ̸= c. The value f(c) is the local minimum value.

• A point of local extrema if it is either a local maxima or local minima.
First Derivative Test:

• If f ′(x) changes from positive to negative as x increases through c, then c is a point of local maxima.
• If f ′(x) changes from negative to positive as x increases through c, then c is a point of local minima.
• If f ′(x) does not change sign, then c is neither a local maxima nor a local minima (it could be a point of

inflection).
Second Derivative Test: If f ′(c) = 0 and f ′′(c) < 0, then c is a point of local maxima. If f ′(c) = 0 and
f ′′(c) > 0, then c is a point of local minima. If f ′(c) = 0 and f ′′(c) = 0, the test is inconclusive.
To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:

1. Find all critical points in (a, b) (where f ′(x) = 0 or f ′(x) does not exist).
2. Evaluate f(x) at all critical points and at the endpoints a and b.
3. The largest value is the absolute maximum, and the smallest value is the absolute minimum.
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Chapter 7

Integrals

Introduction to Integral Calculus
Integral calculus is fundamentally concerned with the inverse process of differentiation. The original motivations
for integral calculus stemmed from problems of calculating areas under curves and finding functions given their
derivatives. These two problems – finding antiderivatives and calculating areas – form the core of integral
calculus.

Integration as the Inverse of Differentiation
If a function f is differentiable on an interval I, and its derivative f ′ exists at each point in I, then the question
arises: given f ′, can we determine the function f? Functions that produce f ′ as their derivative are called
antiderivatives (or primitives) of f . The formula representing all antiderivatives is called the indefinite
integral of f , and the process of finding them is called integration. The indefinite integral of f(x) is denoted
by

∫
f(x) dx. If F (x) is an antiderivative of f(x), then∫

f(x) dx = F (x) + C

where C is called the constant of integration (an arbitrary constant).

Properties of Indefinite Integrals
1. d

dx

(∫
f(x) dx

)
= f(x)

2.
∫

f ′(x) dx = f(x) + C
3.

∫
[f(x) + g(x)] dx =

∫
f(x) dx +

∫
g(x) dx

4.
∫

kf(x) dx = k
∫

f(x) dx, where k is a constant.
5.

∫
[k1f1(x) + k2f2(x) + · · · + knfn(x)] dx = k1

∫
f1(x) dx + k2

∫
f2(x) dx + · · · + kn

∫
fn(x) dx

Two indefinite integrals with the same derivative differ only by a constant.

Methods of Integration
Several techniques exist for evaluating integrals. Some common methods include:

1. Integration by substitution: This involves changing the variable of integration to simplify the integral.
2. Integration using partial fractions: This method applies to rational functions (ratio of polynomials).

The rational function is expressed as a sum of simpler rational functions that are easier to integrate.
3. Integration by parts: This technique is useful for integrating products of functions.

Integration by Substitution
This technique transforms the integral

∫
f(x) dx by substituting x = g(t), so that dx = g′(t) dt, to get:∫

f(x) dx =
∫

f(g(t))g′(t) dt

This method is particularly useful when the derivative of a function in the integrand also appears.

Partial Fractions and Integration
Linear factor: 1

ax+b = A
ax+b

Repeated linear factor: 1
(ax+b)2 = A

(ax+b) + B
(ax+b)2

Quadratic factor: 1
(x2+a2) = Ax+B

(x2+a2)
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Integration by Parts
This method is used for integrating products of functions. If u and v are differentiable functions of x, then:∫

uv dx = u

∫
v dx −

∫ [(
d

dx
u

)
·
∫

v dx

]
dx

The choice of which function to integrate first is significant. A general guideline is to choose the function whose
integral is readily known as the second function. For first function, use the ILATE (inverse, log, algebaric, trig,
exponential)

Indefinite Integration Formulas
1.

∫ 1
x dx = ln |x| + C

2.
∫

ex dx = ex + C

3.
∫ 1

1+x2 dx = tan−1(x) + C

4.
∫

sin x dx = − cos x + C
5.

∫
cos x dx = sin x + C

6.
∫

sec2 x dx = tan x + C
7.

∫
cosec2x dx = − cot x + C

8.
∫

sec x tan x dx = sec x + C
9.

∫
cosec x cot x dx = −cosec x + C

10.
∫

dx
a2−x2 = 1

2a ln
∣∣∣ a+x

a−x

∣∣∣ + C

11.
12.

∫
dx

a2+x2 = 1
a tan−1 (

x
a

)
+ C

13.
∫

dx
a2−x2 = 1

2a ln
∣∣∣ a+x

a−x

∣∣∣ + C

14.
∫

dx√
a2−x2 = sin−1 (

x
a

)
+ C

15.
∫ 1√

x2−a2 dx = log |x +
√

x2 − a2| + C

16.
∫ 1√

x2+a2 dx = log
∣∣x +

√
x2 + a2

∣∣ + C

17.
∫ √

a2 − x2 dx = x
√

a2−x2

2 + a2

2 sin−1( x
a ) + C

18.
∫ √

x2 + a2 dx = x
√

x2+a2

2 + a2

2 log |x +
√

x2 + a2| + C

19.
∫ √

x2 − a2 dx = x
√

x2−a2

2 − a2

2 log |x +
√

x2 − a2| + C

20. If
∫

f(x) dx = F (x) + c, then
∫

f(ax + b) = 1
a F (ax + b) + c

Definite Integrals
The definite integral of a continuous function f(x) over the interval [a, b] is given by:∫ b

a

f(x) dx

The value of a definite integral is a unique number. If F (x) is an antiderivative of f(x), then by the second
fundamental theorem of calculus: ∫ b

a

f(x) dx = F (b) − F (a)

The numbers a and b are called the limits of integration, a being the lower limit and b the upper limit.

Properties of Definite Integrals
Several key properties simplify the evaluation of definite integrals:

•
∫ b

a
f(x) dx =

∫ b

a
f(t) dt

•
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

•
∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx

•
∫ b

a
f(x) dx =

∫ a+b

a
f(a + b − x) dx

•
∫ a

0 f(x) dx =
∫ a

0 f(a − x) dx

•
∫ 2a

0 f(x) dx = 2
∫ a

0 f(x) dx if f(2a − x) = f(x)
•

∫ 2a

0 f(x) dx = 0 if f(2a − x) = −f(x)
•

∫ a

−a
f(x) dx = 2

∫ a

0 f(x) dx if f(x) is an even function
•

∫ a

−a
f(x) dx = 0 if f(x) is an odd function
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Chapter 8

Applications of Integrals

Introduction
In geometry, we learn formulas for calculating areas of various shapes. However, these formulas are inadequate
for calculating areas enclosed by curves. Integral calculus provides the tools to compute such areas. This
chapter explores specific applications of integrals in calculating areas under curves and between curves.

Area Under a Curve
The area A of the region bounded by the curve y = f(x), the x-axis, and the lines x = a and x = b (where
a < b) is given by:

A =
∫ b

a

|f(x)| dx

If the curve is entirely above the x-axis, then |f(x)| = f(x), and if it’s entirely below the x-axis, then |f(x)| =
−f(x). If the curve is partly above and partly below the x-axis, we integrate separately for the regions above
and below the axis and add the absolute values of the resulting areas.

Area Between Curves
The area A of the region bounded by two curves y = f(x) and y = g(x) and the lines x = a and x = b (where
a < b) is given by:

A =
∫ b

a

|f(x) − g(x)| dx

The absolute value ensures that we add the areas of regions above and below.

Areas of Regions
We can use integration to calculate the areas of regions bounded by different combinations of curves and
lines. A careful examination of the given curves and lines is necessary to set up the correct integral. Common
examples include regions bounded by:

• A curve, the x-axis, and two vertical lines (x = a and x = b).
• Two curves and two vertical lines.
• A curve and a line, and two vertical lines.

The choice of integration method (vertical or horizontal strips) can significantly affect the ease of calculation.
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Chapter 9

Differential Equations

Introduction to Differential Equations
A differential equation is an equation that involves an independent variable, a dependent variable, and the
derivative(s) of the dependent variable with respect to the independent variable. The study of differential
equations is crucial in mathematics and has broad applications in many scientific fields. This chapter focuses
on first-order and first-degree differential equations.

Order and Degree
• Order: Order of the highest-order derivative present in the equation.
• Degree: If the differential equation is a polynomial equation in the derivatives, then the degree is the

highest power of the highest-order derivative present in the equation. Else, the degree is not defined.
The order and degree (if defined) of a differential equation are always positive integers.

General and Particular Solutions
• General Solution: A solution that contains as many arbitrary constants as the order of the differential

equation.
• Particular Solution: A solution obtained from the general solution by assigning specific values to the

arbitrary constants.

Methods for Solving Differential Equations
The choice of method depends on the specific form of the equation. Common methods include:

1. Variable Separable: The equation can be written in the form dy
dx = f(x)g(y). The solution is obtained

by separating the variables and integrating.
∫

dy
g(y) =

∫
f(x) dx + C

2. Homogeneous Differential Equations: A homogeneous differential equation is of the form dy
dx = f( y

x ),
where f is a homogeneous function of degree 0. The substitution y = vx (hence, dy

dx = v+x dv
dx ), transforms

the equation into a separable form. Similarly, if dx
dy = g( x

y ), then substitute x = vy (hence, dx
dy = v + y dv

dy )
to convert into variable separable.

3. Linear Differential Equations: The equation is of the form dy
dx +Py = Q, where P and Q are functions

of x only. The solution involves finding an integrating factor, I.F. = e
∫

P dx. Then, the solution is given
by y(I.F.) =

∫
Q(I.F.) dx + C. Similarly, for dx

dy + Px = Q, where P and Q are functions of y only.

IF = e
∫

P dy, and x · IF =
∫

Q · IF dy

13



Chapter 10

Vector Algebra

Introduction to Vectors
Vectors are mathematical objects possessing both magnitude and direction. Unlike scalars (which only have
magnitude), vectors are essential for representing physical quantities like force, velocity, and displacement.
This chapter explores vector algebra, covering fundamental concepts, operations, and their applications.

Basic Vector Concepts
• Vector: A quantity with both magnitude and direction. Represented graphically as a directed line

segment.
• Magnitude (or length): Denoted as |⃗a| or |A⃗B| or a. It’s the distance between the initial and terminal

points of the vector.
• Zero Vector (⃗0): A vector with zero magnitude. Its initial and terminal points coincide.
• Unit Vector: A vector with a magnitude of 1. The unit vector in the direction of a⃗ is denoted as â = a⃗

|⃗a| .
• Coinitial Vectors: Vectors sharing the same initial point.
• Collinear Vectors: Vectors parallel to the same line.
• Equal Vectors: Vectors with the same magnitude and direction.
• Negative of a Vector: A vector with the same magnitude but opposite direction.

Direction Cosines and Ratios
Let r⃗ = xi + yj + zk be a vector.

• Direction Angles: The angles α, β, γ that the vector makes with the positive x, y, and z axes,
respectively.

• Direction Cosines: The cosines of the direction angles: l = cos α = x
|r⃗| , m = cos β = y

|r⃗| , n = cos γ = z
|r⃗| .

Note that l2 + m2 + n2 = 1.
• Direction Ratios: Numbers proportional to the direction cosines: a, b, c such that a

l = b
m = c

n = k for
some scalar k.

Vector Addition
Triangle Law of Addition: If two vectors are represented by two sides of a triangle taken in order, then
their sum (or resultant vector) is given by the third side taken in the reverse order. A⃗C = A⃗B + B⃗C.
Parallelogram Law of Addition: If two vectors are represented by two adjacent sides of a parallelogram,
then their sum is given by the diagonal of the parallelogram through their common point. A⃗C = A⃗B + A⃗D =
A⃗B + B⃗C.
Properties of Vector Addition:

1. Commutative: a⃗ + b⃗ = b⃗ + a⃗
2. Associative: (⃗a + b⃗) + c⃗ = a⃗ + (⃗b + c⃗)
3. Additive Identity: a⃗ + 0⃗ = a⃗

Scalar Multiplication
If a⃗ is a vector and λ is a scalar, then λa⃗ is a vector collinear to a⃗. Its magnitude is |λ||⃗a|, and its direction is
the same as a⃗ if λ > 0 and opposite to a⃗ if λ < 0. The following properties hold:

1. ka⃗ + ma⃗ = (k + m)⃗a
2. k(ma⃗) = (km)⃗a
3. k(⃗a + b⃗) = ka⃗ + k⃗b

14



Vector Components
Any vector r⃗ can be expressed in component form as r⃗ = xi + yj + zk, where x, y, and z are its scalar
components along the x, y, and z axes respectively, and i⃗, j⃗, and k⃗ are unit vectors along these axes. The
magnitude of r⃗ is given by |r⃗| =

√
x2 + y2 + z2.

Section Formula
If a point R divides the line segment joining points P (⃗a) and Q(⃗b) in the ratio m : n, then:

1. Internally: r⃗ = na⃗+mb⃗
m+n

2. Externally: r⃗ = mb⃗−na⃗
m−n

Product of Two Vectors
There are two types of products of vectors:

1. Scalar (or dot) product: a⃗ · b⃗ = |⃗a||⃗b| cos θ, where θ is the angle between a⃗ and b⃗. Properties include
distributivity over addition and commutativity.

2. Vector (or cross) product: a⃗ × b⃗ = |⃗a||⃗b| sin θn̂, where θ is the angle between a⃗ and b⃗, and n̂ is a
unit vector perpendicular to both a⃗ and b⃗ such that a⃗, b⃗, and n̂ form a right-handed system. Properties
include distributivity over addition, but it is not commutative.

15



Chapter 11

Three Dimensional Geometry

Introduction to 3D Geometry
Three-dimensional geometry extends the concepts of coordinate geometry to three dimensions. This chapter
will explore lines, planes, and their relationships in three-dimensional space using vector methods.

Direction Cosines and Ratios
If a line makes angles α, β, and γ with the positive directions of the x, y, and z axes respectively, then cos α,
cos β, and cos γ are called the direction cosines of the line. They are denoted by l, m, and n respectively.
Since l2 + m2 + n2 = 1, the direction cosines are unique. Any three numbers proportional to the direction
cosines are called direction ratios (or direction numbers). If a, b, and c are direction ratios, then:

l = ± a√
a2 + b2 + c2

, m = ± b√
a2 + b2 + c2

, n = ± c√
a2 + b2 + c2

The direction cosines of the line segment joining the points P (x1, y1, z1) and Q(x2, y2, z2) are:

l = x2 − x1

PQ
, m = y2 − y1

PQ
, n = z2 − z1

PQ

where PQ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. The direction ratios are x2 − x1, y2 − y1, and z2 − z1.

Equation of a Line
Vector Equation: Let a⃗ be the position vector of a point A on the line and b⃗ be a vector parallel to the line.
Then, the vector equation of the line is given by:

r⃗ = a⃗ + λ⃗b

where r⃗ is the position vector of any point P on the line, and λ is a scalar parameter. If b⃗ = aî + bĵ + ck̂, then
a, b, and c are the direction ratios of the line.
Cartesian Equation: The Cartesian equation of the line passing through a point (x1, y1, z1) and with direction
ratios a, b, c is:

x − x1

a
= y − y1

b
= z − z1

c

If the line passes through two points (x1, y1, z1) and (x2, y2, z2), then its equation is:

x − x1

x2 − x1
= y − y1

y2 − y1
= z − z1

z2 − z1

Angle Between Lines
Let θ be the angle between two lines with direction cosines l1, m1, n1 and l2, m2, n2. Then:

cos θ = |l1l2 + m1m2 + n1n2|

If the lines are given by x−x1
a1

= y−y1
b1

= z−z1
c1

and x−x2
a2

= y−y2
b2

= z−z2
c2

, then the angle between the lines is:

cos θ = |a1a2 + b1b2 + c1c2|√
a2

1 + b2
1 + c2

1
√

a2
2 + b2

2 + c2
2

Two lines are perpendicular if cos θ = 0, which implies a1a2 +b1b2 +c1c2 = 0. They are parallel if a1
a2

= b1
b2

= c1
c2

.
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Shortest Distance Between Skew Lines
If two lines in space are skew (neither parallel nor intersecting), then the shortest distance between them is the
length of the line segment perpendicular to both lines.
Let the equations of the two lines be:

r⃗ = a⃗1 + λb⃗1 and r⃗ = a⃗2 + µb⃗2

where a⃗1 and a⃗2 are the position vectors of points on the lines, and b⃗1 and b⃗2 are vectors parallel to the lines.
The shortest distance d between the lines is given by:

d =

∣∣∣∣∣ (a⃗2 − a⃗1) · (b⃗1 × b⃗2)
|b⃗1 × b⃗2|

∣∣∣∣∣
If the lines are given in Cartesian form as:

x − x1

a1
= y − y1

b1
= z − z1

c1
and x − x2

a2
= y − y2

b2
= z − z2

c2

then the shortest distance is:

d = |(x2 − x1)(b1c2 − b2c1) + (y2 − y1)(c1a2 − c2a1) + (z2 − z1)(a1b2 − a2b1)|√
(b1c2 − b2c1)2 + (c1a2 − c2a1)2 + (a1b2 − a2b1)2

If the lines are parallel, the shortest distance is the perpendicular distance between them. Let a⃗1 be the position
vector of a point on one line and a⃗2 be the position vector of a point on the other line, and let b⃗ be a vector
parallel to both lines. Then the shortest distance is:

d = |(a⃗2 − a⃗1) × b⃗|
|⃗b|

In cartesian form, if x−x1
a = y−y1

b = z−z1
c and x−x2

a = y−y2
b = z−z2

c are the equations of the two parallel lines,
then the shortest distance between them is given by:

d = |(x2 − x1)(b) + (y2 − y1)(−a) + (z2 − z1)(0)|√
a2 + b2
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Chapter 12

Linear Programming

Introduction to Linear Programming
Linear programming deals with optimizing (maximizing or minimizing) a linear objective function subject
to linear constraints (inequalities or equations). These problems arise in various fields, including resource
allocation, production planning, and transportation. This chapter focuses on solving linear programming
problems graphically.

Problem Formulation
A linear programming problem involves:

1. A linear objective function: A function to be maximized or minimized (e.g., profit, cost). Typically
of the form Z = ax + by for two variables.

2. Linear constraints: Inequalities or equations that restrict the values of the variables (e.g., resource
limitations, production capacities). These are typically expressed as linear inequalities (e.g., ax + by ≤ c,
ax + by ≥ c) or equations (ax + by = c).

3. Non-negativity constraints: The variables are non-negative (e.g., x ≥ 0, y ≥ 0). We cannot have
negative quantities of goods or resources.

The goal is to find the values of the variables that optimize the objective function while satisfying all the
constraints.

Graphical Method
The graphical method is used to solve linear programming problems with two variables. The steps are:

1. Graph the constraints: Plot the linear inequalities representing the constraints on a coordinate plane.
The feasible region is the area where all constraints are satisfied.

2. Identify corner points: Find the coordinates of the vertices (corner points) of the feasible region.
3. Evaluate the objective function: Substitute the coordinates of each corner point into the objective

function.
4. Optimal solution: The corner point that yields the maximum (or minimum) value of the objective

function is the optimal solution. If the feasible region is unbounded, the maximum or minimum value
might not exist.

If the feasible region is bounded, the optimal solution will always occur at one of the corner points. If it’s
unbounded, additional analysis may be required.
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Chapter 13

Probability

Introduction
In earlier classes, we studied probability as a measure of the uncertainty of events in random experiments. The
axiomatic approach, developed by Kolmogorov, treated probability as a function of experimental outcomes.
We will build upon the addition rule of probability and explore new concepts.

Conditional Probability
If we have two events, E and F, from the same sample space, the occurrence of one event may affect the
probability of the other. The conditional probability of event E given that F has occurred is:

P (E|F ) = P (E ∩ F )
P (F ) , provided P (F ) ̸= 0

This formula can be interpreted as the probability of E within the reduced sample space F.

Properties of Conditional Probability
• Property 1: P (S|F ) = 1
• Property 2: If A and B are events, and F is an event with P (F ) ̸= 0, then P ((A ∪ B)|F ) = P (A|F ) +

P (B|F ) − P ((A ∩ B)|F ) If A and B are disjoint, P ((A ∪ B)|F ) = P (A|F ) + P (B|F ).
• Property 3: P (E′|F ) = 1 − P (E|F )

Multiplication Theorem on Probability
For two events E and F:

P (E ∩ F ) = P (F )P (E|F ) = P (E)P (F |E)
This extends to three or more events:

P (E1 ∩ E2 ∩ E3) = P (E1)P (E2|E1)P (E3|E1 ∩ E2)

Independent Events
Two events E and F are independent if the occurrence of one does not affect the probability of the other.
This means:

P (E|F ) = P (E) and P (F |E) = P (F )
Equivalently, P (E ∩ F ) = P (E)P (F ). This definition extends to more than two events.

Theorem of Total Probability
Let {E1, E2, . . . , En} be a partition of the sample space S such that P (Ei) > 0 for all i. Let A be any event in
S. Then:

P (A) =
n∑

i=1
P (Ei)P (A|Ei)

Bayes’ Theorem
Bayes’ theorem calculates the probability of an event E given that event A has occurred:

P (Ei|A) = P (Ei)P (A|Ei)∑n
j=1 P (Ej)P (A|Ej)

where E1, E2, ..., En form a partition of the sample space. This theorem is crucial for reversing conditional
probabilities.
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Random Variables
A random variable (RV) is a function that assigns a real number to each outcome in a sample space. For a
random variable, if P (X = x) = p(x), then

∑
x p(x) = 1.

Expectation (Mean) of a Random Variable
The expectation (or expected value or mean) of a random variable provides a measure of its central tendency.
It is given by E[X] =

∑
x xP (X = x)
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